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Abstract

The increasing presence of electronic and online learning resources presents challenges and
opportunities for psychometric techniques that can assist in the measurement of abilities and
even hasten their mastery. Cognitive diagnosis models (CDMs) are ideal for tracking many fine-
grained skills that comprise a domain, and can assist in carefully navigating through the training
and assessment of these skills in e-learning applications. A class of CDMs for modeling changes
in attributes is proposed, which is referred to as learning trajectories. The authors focus on the
development of Bayesian procedures for estimating parameters of a first-order hidden Markov
model. An application of the developed model to a spatial rotation experimental intervention is
presented.
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Introduction

The increasing presence of electronic and online learning resources presents challenges and
opportunities for psychometric techniques that can assist in the measurement of abilities and
even hasten their mastery. Cognitive diagnosis models (CDMs) are ideal for tracking many
fine-grained skills that comprise a domain, and can assist in carefully navigating through the
training and assessment of these skills in e-leamning applications. The coupling of models for
skill acquisition with item response models in cognitive diagnosis is considered. Modeling
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learning is a natural direction for skills diagnosis with the increased presence of online training
and interventions designed to promote skill acquisition.

Traditional research in CDMs has assumed that the vector of latent skills under diagnosis is static
throughout an assessment. However, e-learning and intelligent tutoring systems provide opportunities
to provide training interspersed with assessment, so it is more accurate to think of the latent attribute
vector dynamically. Only recently have CDMs been considered for changing attribute vectors, and
this has mostly been in the longitudinal data setting (Kaya & Leite, 2016; Li, Cohen, Bottge, &
Templin, 2015), in which considerable time could expire between two assessments within which the
latent trait is assumed static. Li et al. (2015) used the DINA (Junker & Sijtsma, 2001) model together
with a transition model as a means of measuring the effects of an educational intervention. Through
simulation studies, Kaya and Leite (2016) studied such transition models for longitudinal applica-
tions using both the Deterministic inputs, noisy and gate model (DINA) and the Deterministic inputs,
noisy or gate model (DINO) (Templin & Henson, 2006) models.

In e-learning settings, one might reasonably expect that learning could take place between
items or between brief learning modules with little separation in time. Studer (2012) proposed
the Parameter Driven Process for Change method which indirectly tracks learning by assessing
a student’s membership in a small number of possible latent states. The number of latent states
would be much fewer than the 2% attribute profiles that exist when K binary skills are being
assessed, and the K components of the attribute profile are modeled as independent given the
latent state. These latent states essentially serve as higher order latent variables. Some states
have higher prevalence for each component and learning is tracked less specifically by consid-
ering membership in the latent states rather than charting the change in the attribute profile
itself. In this way, fewer transition probabilities are needed to model transitions, but member-
ship in the different latent states has a bearing on changing posterior probabilities for the full
attribute pattern as it changes over time. Studer (2012) also considered the case in which there
are 2K latent states in the transition model, one for each attribute pattern, and refers to this as
Knowledge Tracing plus CDM, though no specific formulation or examples are provided.
Recently, Wang, Yang, Culpepper, and Douglas (2016) considered a full transition model for
the entire attribute pattern to address the individualized transition patterns by using a set of
latent and observed covariates, such as a general leaming ability and practice effects, and
applied it to a study of learning spatial reasoning skills in which an intervention was adminis-
tered between short blocks of items. Recent learning research in CDMs has also considered
sequential statistical methods for detection of learmning (Ye, Fellouris, Culpepper, & Douglas,
2016), in which methods for detection of learning with minimal delay were introduced. More
accurate models for learning could enhance detection, enabling one to more efficiently navigate
through a list of skills to be learned while avoiding false detections.

In the data mining field, the method of Knowledge Tracing (Corbett & Anderson, 1994) has
emerged as a popular technique for modeling learning, usually in the setting of intelligent tutor-
ing systems. Knowledge Tracing bears much resemblance to learning models for CDM, but tra-
ditionally focuses on one attribute at a time. In fact, Studer (2012) showed that Knowledge
Tracing is mathematically equivalent to an extension of the Noisy inputs, deterministic and gate
model (NIDA) (Junker & Sijtsma, 2001; Maris, 1999) model for multiple time points, with the
restriction that each item depends on a single skill. However, recent extensions to Knowledge
Tracing have been introduced that incorporate multiple skills at once and allow for different
item parameters (Gonzalez-Brenes, Huang, & Brusilovsky, 2014; Gonzalez-Brenes & Mostow,
2013; Pardos & Heffernan, 2010; Y. Xu & Mostow, 2012). As the body of research on dynamic
latent class modeling grows, the parallel tracks of CDM and Knowledge Tracing can be
expected to produce ideas that can benefit both methodologies at once.
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The purpose of this article is to propose a class of dynamic models for tracing changes in
attributes, which is referred to as learning trajectories. There are two main contributions com-
pared with the existing literature. The first is to introduce the notion of learning trajectories
within the CDM framework. Different types of learning trajectories, from the most general
case, unstructured trajectories, to nondecreasing patterns, are defined and illustrated with exam-
ples. A Bayesian Modeling framework to capture each type of learning trajectory is also estab-
lished. Especially, the authors discuss and compare their model complexities, the number of
parameters, and the prior distributions for each proposed model. The second contribution is that
one of the proposed model through a Monte Carlo simulation and a real data application are
evaluated. In practical settings, researchers may have a pool of items to administer over time to
evaluate learning trajectories. There is no prior research on how to design such tests to ensure
accurate model parameter recovery. Accordingly, the Monte Carlo simulation includes condi-
tions to evaluate different test designs for studies of learning trajectories, and the results can
provide some guidelines on how to design an efficient test to guarantee the accuracy of the esti-
mation of item parameters and learning transition matrix. The real data application demon-
strates how to use the proposed model to capture students’ learning trajectories in a spatial
rotation experiment with learning interventions. The estimated transition matrix has implica-
tions on how students learn those skills, and this information can be used to refine learning
interventions to improve the speed at which skills are mastered.

This article includes five sections. The ““Enumerating Leaming Trajectories’ section intro-
duces readers to the notion of learning trajectories within the CDM framework. One consider-
ation of this section is to enumerate the complexity of different learning trajectories with an
aim of identifying the level of generality that may be possible to consider in real problems. The
“Modeling Learning Trajectories’ section presents a Bayesian model formulation for estimat-
ing CDMs. In particular, this section provides an overview of several prior distributions for
modeling leaming trajectories over time. The ““Monte Carlo Simulation Study” section reports
results from a Monte Carlo study that is designed to assess parameter recovery of a first-order
hidden Markov model (FOHM). The ‘“Application to Spatial Rotation Skill Acquisition™ sec-
tion presents an application of a FOHM model to a spatial rotation experimental intervention.
The “Discussion’ section provides concluding remarks and recommendations for future
research.

Enumerating Learning Trajectories

This section considers the circumstance where the latent attributes may change over time. Let
a;z be one if individual i (i=1,...,N) possesses attribute & (k=1,1...,K) at time ¢
(t=1,...,T). Define a trajectory of attribute profiles for individual i as o;=(a1,---,r)
where a; =(a,. .. ,0K) tepresents student i’s attribute profile at time ¢. Let j=1,...,J;
index the number of items administered at time ¢ and define the total number of items as
J= Zf; 1 Ji- Let Q, be the J; XK Q-matrix at time ¢ with zeros and ones that denote the skills
needed to correctly answer the J; items at time .

Let the total set of attribute vectors be A= {a : @ € {0,1}*}, so that e, € A denotes one
of the possible 2 attribute vectors. Define the set of attribute profiles with k mastered skills as
Ai={a:ac{0,1}",|al; =k} and note that A= UK, A;. Recall that the cardinality of

Ay is the number of attribute profiles in Ay and is denoted by |A;|= (f) and the total num-

ber of attribute profiles is |.4|= Y5 _, (I}f) =K.
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Unrestricted Learning Trajectories

Definition 1: In the absence of restrictions on the discrete latent class space, the set of learn-
ing trajectories at time # is recursively defined as

AV=A""xA=A" (1)

Note the parentheses in the superscript are dropped and .A" is used to denote the set of leam-
1n% irajcctoncs at time 7. The definition implies the set of attribute trajectories for time 7=1 is

: Similarly, the set of attribute trajectory classes for time ¢=2 is
A(Z A] XA A’. That is, students can theoretically switch from the initial states in LA to
any attribute class in .4 after receiving feedback and/or instruction. Rules concerning Cartesian
products imply the cardinality of LA is the product of sets is |AT| =2KT that is, learning tra-
jectories grow exponentially with time and the number of attributes.

Example 1: Consider A" for K=2 and T=2. If K=T=2, A'={00,10,01,11} and .A>
includes 16 learning trajectories:

2_ 41 _ (o
A=A xA—{ 01

Nondecreasing Learning Trajectories

Clearly, the discrete latent space grows exponentially as ¢ increases, and the set A’ can be
restricted to study a subset of the 257 leaming trajectories. For instance, in education, a reason-
able assumption is that students acquire skills over time in a nondecreasing fashion. Stated dif-
ferently, learning can be assumed to be an absorbing state where mastered attributes cannot be
unlearned. This subsection compares the set of nondecreasing learning trajectories with A"

Definition 2: Nondecreasing learning and skill acquisition trajectories are defined as

A, =A'N{a: e, Vi>1). (2)

That is, A", is the set of learning trajectories that are nondecreasing. It is straightforward to
find the cardinality of .A", by counting the number of ways of picking the change point (i.e.,
the point where a; changes from zero to one). For a given attribute, there are T’ possibilities
for the change point if learning occurs and one possibility if the attribute remains a zero over
time for a total of T+ 1 outcomes. Consequently, the number of nondecreasing change points
for K attributes is [ A’ | = (T +1)~.

Example 2: Revisiting Example 1 with K=2 and 7=2, for K=2 and 7'=2, there are a total
of nine nondecreasing learning trajectories within A% . The set of nondecreasing learning
trajectories, A2 , includes the following elements:
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A’, ={(00,00), (00, 10), (00, 01), (00, 11), (10, 10), (10, 11), (01,01), (01, 11), (11, 11)}.
ui

Any models of student learning trajectories necessarily must propose a manner in which stu-
dents transition between attribute classes over time. One limitation for practice is that the num-
ber of leaming trajectories grows exponentially with 7, which implies that larger datasets would
be needed to accurately model the share of the population in any given learning trajectory. The
learning assumption significantly reduces the number of possible learning trajectories. For pur-
pose of demonstration, Table 1 reports the cardinality of A, and A" for different values of T
and K. The values in Table 1 show that even for the case where K =2 and T =6, there are 4,096
unrestricted learning trajectories, which could pose challenges in real applications. In contrast,
the learning assumption reduces the number of learning trajectories by a factor of nearly 100
from 4,096 to 49. An important observation from Table 1 is that the number of unrestricted
learning trajectories grows quickly even for a modest K =4 with a total of 224 possible trajec-
tories. Although there are relatively fewer nondecreasing learning trajectories, for K =4 and
T =6, researchers would need substantial data to estimate probabilities of membership in one of
the possible 2,401 classes.

Modeling Learning Trajectories

This section discusses strategies for modeling unrestricted and nondecreasing learning trajec-
tories. Let o) = (a1, . .., ayr) be a leaming trajectory such that a; € AT Let Yi; denote the ran-
dom variable for person i to item j at time ¢ and let y;, represent the observed value. Let
Yi=Ws,.-.,yir) denote vectors of observations over time of the random variables
Y; =(¥;,...,¥;r) with y;r =WVilts - - - » Vit) and Y;r =Yz ..., Yi). Let the collection of item
parameters over time be denoted by {'=({;,...{7) with {;=({,...,{;,), and ; denotes the
item parameters for item j at time 7.

The probability of a correct response on item j at time ¢ for an individual with learning trajec-
tory / is P(¥y = 1oy, =0y, ;). Assuming that responses are independent given a;, the probabil-
ity of observing subject i’s responses to items j=1,...,J; at time ¢ conditioned upon e; =0y
and the item parameters {, is

Jp
p(Yilow, ¢,)= H [P(Yi= o=, L) | [1 = P (Y= o= e, L) | =3 3)
j=1

Assuming item responses are independent over time given the learning trajectory of attribute
profiles and item parameters implies that the likelihood for individual 7 is

T

p(¥iloy, 2) H Yilou, £,)- (4)

The posterior probability that a;= «a; given the observed responses and item parameters is
proportional to the product of p(¥;|ay,{) and p(oey;), where p(ey) is the prior probability that
individual 7 has learning trajectory /. Certainly, there are many choices for p(c;). The following
discussion describes several models for o; that differ in terms of complexity and the number of
parameters.
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Table I. Cardinality of Unrestricted and Nondecreasing Learning Trajectories for Values of K and T.

| AL |=(T+ 1) |AT|=2K

T K=l K=2  K=3 K=4 K=1 K=2 K=3 K=4

| 2 4 8 16 2 4 8 16
2 3 9 27 8l 4 16 64 256
3 4 16 64 256 8 64 512 4,096
4 5 25 125 625 16 256 4,096 65,536
5 6 36 216 1296 32 1,024 32,768 1,048,576
6 7 49 343 2401 64 4096 262,144 16,777,216

Unstructured Trajectories

Consider the case where individuals can freely move through attribute classes over time (i.e.,
losing an attribute is possible). In this case, as noted above, there are 2X7 possible learning tra-
jectories ;. Let m=P(e;=a; € AT) denote the structural probability of having learning tra-
jectory [ characterized by starting at o, proceeding through e, for 1<t<T, and terminating at
7. Let w=(my, ..., mxr) be the 2XT vector of unstructured learning trajectory profiles, so the
categorical prior for «; is

2AT

ploy|m) = H'rrI("’ o) (5)

The posterior probability that individual i’s followed learning trajectory oy conditioned upon
the data, item parameters, and structural parameters in the unstructured case is

ple| ¥, 6, m)op(¥ile, € (Hw'*'(“f‘“*) (6)

DINA Bayesian model formulation. The prior for the general unstructured model for learning tra-
jectories can be included as a prior for any CDM Bayesian formulation. Consider the case of the
DINA model for the item response function, P(Yj; = 1|et; = ey, ;). Also, let item parameters be
invariant over time (i.e., s;, =s; and g; = g;), and suppose Q is known. A Bayesian model for esti-
mating the general unstructured model for the DINA CDM is

K

Yiu |0A:u,Sj,gJf Bemoulll((l —S)"”’gj] 11;;;) MNije = Haﬂ;’f, (7)
k=1
2A'T _ 2A'T
P(ﬂi|“)’xH“f(uf_u’)a 0<m<l, Z'iTFl, (8)
1=1 =1
'ﬂ'""DiI‘iCh.let(S(]), 8= (8{]], R 80,2”), (9)
P(sg)esy ™ (1-5) P g (1-g)* ' ZT(0 < g<1—5<1). (10)

Equation 9 is a conjugate Dirichlet prior for the unrestricted learning trajectory probabilities.
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Nondecreasing Learning Trajectories

As noted above in Table 1, using the prior in Equation 6 would require substantial observations
for even modest T and K to accurately recover parameters. One way to reduce the computa-
tional burden in educational contexts is to assume learning trajectories are nondecreasing. As
noted above, there are (7 + 1)* possible nondecreasing attribute trajectories. One strategy is to
specify the prior for a; as categorical over the (7 + 1)’ nondecreasing trajectories,

(T+1)* 9KT
P(ail'ﬂ""): H “l;Elm—m)ch(OKa“aQ .. 'aiTlK) H“;I(m—m), (11)
=1 =1

where ;= P(e; =a; € A”) is the probability of being in the nondecreasing attribute profile /
and e; ;1o if g, -1 < a for k=1,..., K. The posterior probability that individual i follows
nondecreasing attribute trajectory ay is

(T+1)*
p(afm-,c,m)mp(mm,c)( 11 w’i&“‘“’)). (12)

=1

DINA Bayesian model formulation. Consider the DINA model item response function for the non-
decreasing attribute trajectories with parameters for item j invariant over time (i.e., s;; =s; and
gi:=g;) and Q is known. A Bayesian model for estimating the nondecreasing model is obtained
by updating the prior for a; by replacing Equation 6 with 11 as,

al Az

ploy|m)e H T T 0<ma<l, Y ma=1, (13)
=1

p~Dirichlet(8y), 8= (801,...,80, | Ail)' (14)

FOHM Model

Table 1 shows that the cardinality for the set of unrestricted and nondecreasing leaming trajec-
tory sets may be too large for datasets observed in typical educational research studies. An
alternative is to use a more parsimonious approximation to larger sets of the unrestricted and
nondecreasing learning trajectories.

One approximation as employed in prior research (e.g., see Kaya & Leite, 2016, for an exam-
ple with #=2) is to consider a hidden Markov model with first-order transition probabilities, 2.
That is, let 7, denote initial class membership probabilities at time =1 and let 2 be a 25 x2¥
matrix of first-order transition probabilities between classes. Specifically, the elements of €2
denote the chance of transitioning from class ¢ to ¢’ between any two time periods. Let elements
of @ be denoted as wy | =p(a; =au|a; 1 =a.) for all 7. The prior for a; under an unrestricted
FOHM model for ¢ > 2 is

T
play|mi, @) =p(an|m) [ [ p(oula, i1, )
=2

r (o1 =) (15)
— I(Ctn ﬂe ‘I(m,—u
Cte.re

o cA 1‘=2



12 Applied Psychological Measurement 42(1)

The unrestricted FOHM model requires significantly fewer parameters to be estimated than
both A" and A’ . In fact, there are 2K +4X total parameters (i.c., 2X elements in m; and 4%
elements in &2). A clear advantage of the FOHM model is that the model imposes some struc-
ture to reduce the parameters to a set that can be more easily recovered in applied educational
settings. Furthermore, the number of parameters for the FOHM model does not grow with 7.
However, it should be emphasized that the FOHM model is an approximation and may not cap-
ture the true underlying nuance found in the unstructured and nondecreasing learning trajec-
tories A" and A",

The full conditional distribution for a;; depends upon ¢ for the FOHM model. For attribute
profiles at time ¢ such that 1<¢<T, a; is conditioned upon the adjacent attributes a; ,_; and
a; (+1. Accordingly, the full conditional probability that a;, =, given that o; .1 =@, and
O p+1 =0 1+ 18

ploy|Y i, 8, R, 00 1,000 +1)%p(Yiloy, O)p(ou| o, —1, R)p(a +1 |0, R)
“P(Ynlamgr)ﬂmc Wy

; (16)

where wj, =p(oy =ay|a, 1 =) and o ;=p(Q;+1 =0 |a; =a;) are first-order transition
probabilities. At time , the conditional probability that a;; =ay;; given the item responses and
parameters and o = @3 18

plen|Y;, § R, an)xp(Yalan, §)m o), (17)

where m;=p(a;; =) is the baseline prior probability. Similarly, for time ¢= T, the conditional
probability that ;7 =0y given ¥, {,and o; 71 =0, 71 i8

ployr| ¥, 6 @, e 7_1)%p(¥ir|eur, §; ) oy, (18)

Given the priors p(w,) and p(7r;), the full conditional distribution for £ and  can be derived
as follows:
2K 9K

P(& me, H H (plew=exclerr1 =a, 0)p () ) 7"y, ip (i )7

2K ok &

OCHHUJCE"“] i 'p(ey)p(m;) . (19)

z“ z“

':xHH £|1+81£ No;+8“
c|z'

where ﬁcp is the number of subjects that have attribute profile e; at time ¢ and change into e,
at time r+1, r=1,...,7 — 1, and Ny is the number of subjects that initially have attribute

profile a;. Let Dirichlet distributions be the conjugate priors for 7, and each @,, c=1,...,2%,
that is,

m = ("IT],], - ,ﬁ],ZK)WDiriChlct(ﬁo), 50= (8{]’], ceey 80,2;(), (20)

0, = (@i, ..., )~Dirichlet(8,), 8.= (81, . .., dx), (21)

then as shown in Equation 19, the posterior for ar; will be Dirichlet(3o+No), where
No—(No 1,---»Ng %), and posteriors for e, will be Dirichlet(d.+N,), where
=Nijes - - - » Nox o).
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FOHM Model, Nondecreasing Attributes

The previous subsection introduced the unrestricted FOHM model, and there may be substan-
tive areas where it is reasonable to assume attributes are nondecreasing over time. A nonde-
creasing FOHM model can also be formulated that restricts transitions to nondecreasing states.
Specifically, let . include zeros for elements of € that correspond with losing an attribute. In
this case, the prior for a; becomes,

T
plai|m, @4 )=p(a|m) [ plew|ai,1,R+)
=2

r Tleye1 =) (22)
o 1—[ “'T"c(ml=ﬂe) 1—[2( H mgl(cﬂrFﬂé)) .
(=

a.cA Ot

The nondecreasing FOHM includes fewer parameters to estimate than the unrestricted FOHM
model. In cases where attributes cannot be unlearned, it is possible to show that €+ includes a
total of 3X transition probabilities. The reduction in parameters between the unrestricted and
nondecreasing FOHMs is nontrivial. For K=1,2, 3,4, € for the unrestricted FOHM includes 4,
16, 64, and 256 elements, respectively, in comparison with 3, 9, 27, and 81 for €+ of the non-
decreasing FOHM.

The full conditional distributions for a;, under the nondecreasing FOHM model have the
same form as Equation 16 through 18 for the unrestricted FOHM model. The only modification
is to recognize that some of the transition probabilities are zero.

Higher Order FOHM Model

A parsimonious alternative is to model transition probabilities for each attribute and introduce
dependence in transition by conditioning on a higher order factor, 6. Another version of a higher
order FOHM model specifies a prior for each o, conditional on a higher order learning trait 6
for the probability of transitioning and retaining an attribute,

wijo, i =Ptk = 1k, .1 =0, 0, 7¢), (23)
@11, % =P = ek, -1 =1,0;,vy), (24)

where y, and vy, are possibly vectors of parameters used to model the transition probabilities as
a function of 0. It is important to recognize the role of 0 in the higher order FOHM model. The
higher order factor captures individual differences in learning rates and is included to model
dependence among transitions in attributes over time.

One option for modeling the transition probabilities for attribute & is to, for example, set
w10, ix = ¥ (Yoor +Yo1,9;), where W(-) is a cumulative distribution function. In fact, Wang et al.
(2016) provided an example of setting ¥ as a logistic function.

The distribution of ay, given o, 1, 0, and the transition model parameters, is

I—oe e

1— oy Ok, -1 , 1— oy
Poire| g, -1, 0i,v0, 1) = (m?ﬁ:,;g (1= oy,u) am) (m?ﬁ],,} (1 — wyj0,i) am)
(25)

If attribute transitions are independent given 6, the prior probability for e; conditioned upon ini-
tial class membership 7 and transition parameters vy, and 1y, is
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T K
pley|mi,v0,v1) = H “i(ﬂ“_ﬂe J(H HP Qi i 11, ))P(ei)dei: (26)

oA t=2k=1

where p(6;) is a prior distribution for 6.

The aforementioned discussion of the higher order FOHM model allows for individuals to
lose attributes when transition from on time to the next. The learning assumption can easily be
enforced by setting w3 4 =1 and a1 forall k and ¢.

Monte Carlo Simulation Study
Overview

This section reports Monte Carlo simulation studies evaluating the recovery of the transition
matrix and item parameters based on the FOHM model for nondecreasing learning trajectories.
The model by considering K =4 attributes, 7=15 time points, and J =50 items with slipping
parameters equal to 0.2 and guessing parameters equal to 0.3 is illustated. The transition matrix
is set to be the same as the estimated transition probabilities from the real data of the next sec-
tion (see Table 6). In this simulated test, 50 items are assigned into five blocks with 10 items in
each block, and the Q-matrix in each block is complete (Chiu, Douglas, & Li, 2009) for model
identification purposes. Wang et al. (2016) conjectured that the item positions may cause biased
item parameter estimation because the students’ latent attribute profiles are assumed to change
with time while the DINA model parameters are static. In this case, the items in the later stage
of the test may not receive the sufficient exposure to different latent classes, causing an inaccu-
rate estimation for the corresponding model parameters. To investigate whether there is an order
effect of the item positions to model parameter estimation, two test designs are considered. The
first mimicked the experimental design in Wang et al. (2016) where the blocks of items are
counterbalanced allowing each item to be positioned throughout all test stages to guarantee
items will be exposed evenly at different time points, and it is referred as a “‘balanced™ design
from now on. The second was an unbalanced design where each examinee receives the same
order of blocks during the test. For each test design, three levels of sample sizes N = 500; 2,500;
5,000 were considered, and for each level, 50 independent datasets were generated to assess the
performance. A Markov chain of 20,000 iterations with a burn-in of 10,000 iterations is used
and the convergence of Gibbs samplers using the multivariate potential scale reduction factor
(MPSRF) R (Brooks & Gelman, 1998) for chain length of 10,000 is evaluated. Examinees’ ini-
tial attribute profiles were simulated from the multivariate normal threshold model (e.g., see
Chiu et al., 2009), and both independent structure and dependent structure with p=0.5 of the
initial attributes are considered in the simulation. The true distribution of initial attribute profiles
is shown in Table 2.

Results

Parameter convergence was evaluated using the MPSRF based on five independent Markov
chains of length 10,000 starting from random initial values. The results suggest the Markov
chain converges to the posterior distribution after 4,000 iterations, which indicates that a chain
length of 20,000 iterations with a burn-in of 10,000 is reasonable for this simulation study.
Figures 1 and 2 show that this method can accurately estimate the slipping and guessing
parameters. When the sample size is small, results using the balanced design outperform the
results under the unbalanced design, and the difference between the two test designs diminishes
as sample size grows. Figure 3 presents the deviance of estimated probabilities for initial
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Table 2. True Distribution of Initial Attribute Profiles.
o 0000 0001 0010 0011 0100 olol oll1o ol
p=0 0.038 0.010 0.026 0.006 0.058 0.014 0.038 0.010
p=0.5 0.122 0.002 0.012 0.001 0.044 0.003 0.013 0.002
o 1000 1001 1010 1011 1100 1101 1110 1l
p=0 0.154 0.038 0.102 0.026 0.230 0.058 0.154 0.038
p=0.5 0.178 0.013 0.058 0.012 0.194 0.044 0.179 0.122
. p=0 N =500 p=05 N =500
0.4
0.
<
0.
0.1
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Figure |. Estimated slipping parameters for different settings.
Note. Results are based on 50 replications.

attribute classes. The bias becomes smaller as the sample size grows, and results from the
balanced design tend to have smaller bias than the unbalanced design. Figure 4 presents the
deviance of estimated transition probabilities. There are 81 transition probabilities and the last
one is always 1 because of the nondecreasing constraint. Again, the accuracy of the estimated
transition probabilities improves with the increase of the sample size. In summary, the simula-
tion results indicate it is better to use the counterbalanced design for relatively small sample
sizes to ensure accurate recovery of the model parameters.
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Figure 2. Estimated guessing parameters for different settings.
Note. Results are based on 50 replications.

Application to Spatial Rotation Skill Acquisition

In this section, the FOHM model with nondecreasing attributes assumption is applied to model
students’ learning of spatial skills. The spatial reasoning questions were developed based on the
Revised Purdue Spatial Visualization Test (PSVT-R; Yoon, 2011). Wang et al. (2016) extended
this test to incorporate a training tool which is designed to cause leaming of rotation tasks.
Specifically, participants first answered the questions in a test block then proceeded to a leam-
ing block in which they can receive feedback on their responses in the previous test block and
learn the corresponding spatial rotation tasks through a leaming intervention. The whole test
consisted of five test blocks each containing 10 questions, followed by a learning intervention
block. The items in the test block included a rotated object, and subjects were presented a new
object and must determine which of the five options corresponded to the rotated version. Four
mental rotation skills were identified: (a) 90° x axis, (b) 90° y axis, (c) 180° x axis, and (d) 180°
y axis. All items included x and y axis rotations with objects of varying complexity. The 10
questions were assembled with similar structures but were different for each block. To elimi-
nate the order effect on the estimation of the item parameters, a counterbalanced test condition
was applied. Five versions of test were developed by rotating the five test blocks as the first
block in the whole test process. During the experiment, those five tests were randomly assigned
to participants to guarantee that different test blocks can have an equal chance to be the first
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block among the participants. The detailed experiment design can be referred to Wang et al.
(2016).

Responses from 351 individuals to those 50 questions were collected from this experiment,
and the FOHM model with nondecreasing attributes assumption and DINA Bayesian Model for-
mulation was applied to estimate students” learning trajectories. The five test blocks in the test
represented five different time points. Based on previous simulation results, the chain of 30,000
iterations with a burn-in of 15,000 is used to ensure the convergence of the Markov chain.

Table 3 documents the estimates of the DINA item parameters. The results are quite consis-
tent with the estimates from Wang et al. (2016). That is, most of the items have relatively large
guessing parameters. This result might be due to the simple shapes for some items and the many
distractors that can be easily eliminated from consideration. Students’ learning trajectories in
terms of the estimated mastery rate for each of the four skills over time, the frequencies of the
number of mastered skills at each time point, and the transition matrix are summarized, which
are presented in Tables 4 to 6, respectively. From those results, an increase of mastery rates for
each skill with time and the transition pattern of different latent classes at each time point are
observed.

The transition probability matrix explicitly gives the probabilities of remaining in the same
stage or learning more skills from time ¢ to £+ 1, which reveals the learning pattern of current
mastered skills. The learning process can be inferred by interpreting the entries in the estimated
transition matrix. For example, in Table 6, the ninth row of the estimated transition matrix pre-
sents the transition probability for current state of attribute profile (1,0, 0,0) to another latent
class. It indicates that if a student has mastered a single skill on 90° x axis, he or she tends to
master more skills next time with probability around 0.87, and the most likely skill to be mas-
tered next is 90° y axis or 180° x axis. On the contrary, the fifth row shows the transition prob-
ability for current state of acquisition on the single skill of 90° y axis. The chance for mastering
more skills next time is around 0.67, which is lower compared with mastery of 90° x axis, and
the next mastered skill with this current latent state will most likely to be 180° y axis. The sec-
ond and third rows also imply that students who have mastered skills on 180° x axis or y axis
will most likely master 90° x axis or y axis next time. This in fact also indicates certain hierarch-
ical structure among those four latent skills, mastering the 90° might be prerequisite for master-
ing 180°.

The distribution of the initial latent classes at Time Point 1 in the transition matrix is slightly
different from those estimated from Wang et al. (2016). This might be due to the different
assumptions applied to the transition matrix. The FOHM model assumes the time-homogeneity
of the transition matrix, that is, the transition probabilities of different latent classes are the
same at different points of time, and are the same for each individual. However, the transition
probabilities in Wang et al. (2016) depend on different covariates, which could make it differ-
ent for different individuals and at different points of time. In this sense, FOHM model with
nondecreasing learning trajectories assumption is a reduced model from Wang et al. (2016),
and it is worth investigating the model comparison in the future to select the most appropriate
model for a given data set.

Discussion

Online education is becoming ubiquitous, and when coupled with intelligent tutoring systems
and sequenced training modules, it provides an opportunity to systematically train subjects on a
long list of prespecified attributes while keeping careful track of progress. This is an ideal set-
ting for utilizing latent class models for cognitive diagnosis. However, the static models that
have typically been considered are not adequate when training and learning are the goals, which
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Table 3. Item Parameter Estimates for Spatial Rotation Data.

Parameters

Item § g

| 0.023 0.811
2 0.037 0.749
3 0.109 0.562
4 0.027 0.618
5 0.136 0.487
6 0.519 0.229
7 0.058 0.601
8 0.159 0.425
9 0.017 0.848
10 0.140 0.578
I 0.054 0.620
12 0.056 0.754
13 0.027 0.527
14 0.040 0819
15 0.181 0.315
16 0.122 0.547
17 0.112 0.324
18 0.056 0.639
19 0.155 0.325
20 0.132 0.370
21 0.059 0.645
22 0.063 0.533
23 0.115 0.446
24 0.117 0.433
25 0.018 0.805
26 0.174 0.323
27 0.176 0.553
28 0.018 0.883
29 0.041 0.794
30 0.259 0.357
31 0.098 0.461
32 0.031 0.522
33 0.027 0.723
34 0.151 0.613
35 0.123 0.384
36 0.141 0.320
37 0.379 0.327
38 0.056 0.751
39 0.165 0.345
40 0.135 0.500
4] 0.055 0.569
42 0.110 0.468
43 0.056 0.785
44 0.027 0.659
45 0.123 0.461
46 0.059 0.468
47 0.230 0.287
48 0.447 0.301
49 0.018 0.727
50 0.069 0.479

Note. Results are based on the chain of length 30,000 and burn-in 15,000.
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Table 4. Skill Mastery Rate Over Time.

Skills Time Point | Time Point 2 Time Point 3 Time Point 4 Time Point 5
90° x axis 0.530 0.607 0.632 0.652 0.670
90° y axis 0.618 0.678 0.712 0.749 0.781
180° x axis 0.473 0.536 0.575 0.621 0.670
180° y axis 0.459 0.521 0.547 0.601 0.661

Note. Results are based on the chain of length 30,000 and burn-in 15,000.

Table 5. Number of Skill Mastery Over Time.

Number of skills Time Point | Time Point 2 Time Point 3 Time Point 4 Time Point 5
0 121 99 93 8l 70
| 37 28 23 23 23
2 33 4] 36 32 26
3 13 20 25 26 27
4 147 163 174 189 205

Note. Results are based on the chain of length 30,000 and burn-in 15,000.

suggests that latent class models for learning in cognitive diagnosis will be a fruitful and fertile
area for research and applications. Here, some of the possibilities for modeling learning trajec-
tories in cognitive diagnosis, starting with the most general model with 257 parameters, and
then a more parsimonious model for nondecreasing trajectories with (7+ 1)* parameters, are
laid out. In most applications, this will be too many to calibrate, and the authors further restrict
the model to arrive at the FOHM model, with 3X parameters to estimate in the case of nonde-
creasing trajectories. This model is quite flexible, and is practical when large samples are avail-
able, when K is relatively small, or when a long list of attributes can be partitioned into small
subgroups of attributes that are studied together and can be modeled separately with distinct
FOHMs. To further reduce the parameters of transition models for learning, covariates may be
used, and this is a wide-open area for future research. Covariates may involve demographic
variables, measures of the amount of practice one has done, dummy variables for interventions,
and many other predictors of learning. To address the heterogeneity of learning rates across sub-
jects in a population, continuous random effects may be used, which can be interpreted as latent
variables representing the construct of general learning ability as studied by Wang et al. (2016).
Measuring such a construct may be of intrinsic interest, beyond simply serving to address the
heterogeneity.

The directions for extending static CDMs to include the dynamics of learning are numerous,
but should not outrace the empirical data on learning by much. There is a need for more applied
research to gather data applicable to leaming research, which will afford the opportunity to
investigate the particular models and covariates for learning that provide the best fits and yield
the most accurate and useful predictions. The spatial reasoning example in the real data study
was gathered carefully in a laboratory according to a designed study, and illustrates how a
model such as the FOHM model can be used in practice. The accuracy of leamning transition
probability estimates was limited by the modest sample size. However, the Markov Chain
Monte Carlo (MCMC) algorithm ran efficiently with these data and indicated convergence to
the posterior distribution of the parameters. The model complexity of the FOHM model is
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difficult to compare with the higher order model with covariates of Wang et al. (2016). The
number of structural parameters is much higher in the FOHM model, but the higher order model
includes a latent learning ability parameter for each individual, resulting in more actual transition
probabilities. Nevertheless, these two models yielded results that were relatively consistent.

A common aspect of the FOHM model and the models of Wang et al. (2016) is that of non-
decreasing trajectories. Yet another direction to consider in latent class models for learning is
how to build relatively parsimonious models that allow for traits to be learned and unlearned.
This modeling of retention may prove especially useful in long range longitudinal studies more
than in the relatively short time duration of the spatial reasoning training and assessment.

In this study, it is assumed that the item parameters were invariant over time. It is unclear whether
fixing item parameters over time is a necessary condition for identifying the model parameters.
Additional theoretical research is needed to establish general model identifiability conditions.

Models for learning will necessarily be more complicated than static models, because they
combine the measurement model with a transition model. Computational aspects of fitting these
models will be a critical area of research. In the simulation study and real data analysis, the
DINA model was used. When attributes are so clearly defined, such as the particular rotation
operations in the data example that must be applied conjunctively, the DINA model can fit quite
adequately as shown by Wang et al. (2016). However, in applications with less clear attributes,
perhaps leading to some Q-matrix misspecification, more general CDMs will prove useful.
Coupling the FOHM model or another learning trajectory model with a more general measure-
ment model (e.g., see Henson, Templin, & Willse, 2009; G. Xu, 2016) can present computa-
tional challenges and the need for research and software development. Another area of research
that will play a vital role is assessment of model fit. The dynamic aspect of this model presents
another dimension of fit assessment than is required by static models, and techniques that target
particular aspects of misfit will be more useful than global measures of fit. The general method
of posterior predictive checking (Sinharay, 2006; Sinharay & Almond, 2007; Sinharay, Johnson,
& Stern, 2006) allows one to study residuals that pertain to a particular aspect of fit, such as the
measurement model or the transition model, and there is a need for research into the residuals
that best evaluate the fit of each. As more data are collected through online learning, new ques-
tions and applications will arrive that will require additional methodological research in this
emerging area of psychometrics.
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